

www.icc-es.org | (800) 423-6587 | (562) 699-0543

ICC-ES Evaluation Report ESR-3558

DIVISION: 05 00 00—METALS Section: 05 05 23—Metal Fastenings

REPORT HOLDER:

KYOCERA SENCO INDUSTRIAL TOOLS, INC.

EVALUATION SUBJECT:

SENCO SELF-DRILLING AND SELF-PIERCING SCREWS

1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2021, 2018, 2015, 2012 and 2009 International Building Code[®] (IBC)
- 2021, 2018, 2015, 2012 and 2009 *International Residential Code*[®] (IRC)
- 2013 Abu Dhabi International Building Code (ADIBC)[†]

 $^{\dagger}\text{The ADIBC}$ is based on the 2009 IBC. 2009 IBC code sections referenced in this report are the same sections in the ADIBC.

Property evaluated:

Structural

2.0 USES

The Senco self-drilling and self-piercing screws are used to connect cold-formed steel members together and to connect sheet steel to cold-formed steel. The screws are used in engineered connections of cold-formed steel and in connections prescribed by the code for cold-formed steel framing and for sheathing to steel connections.

3.0 DESCRIPTION

3.1 General:

The Senco self-drilling and self-piercing screws are tapping screws, case-hardened from carbon steel conforming to ASTM A510, Grade 1022. Table 1 provides screw designations, model numbers, descriptions including screw nominal size, threads per inch (tpi), length, screw diameter, drive recess, head style, head diameter, point style, drilling/piercing ranges, minimum required protrusion lengths and coatings. Screws are supplied in boxes or tubs of individual screws or in collated screw strips. A Subsidiary of the International Code Council®

Reissued June 2023

This report is subject to renewal June 2025.

3.2 PMTH Self-piercing Screws:

The #8 PMTH self-piercing screws comply with ASTM C1513, with a coarse thread design. The screws have a Phillips modified truss head (PMTH) style, and have a clear zinc coating, as indicated in Table 1. See Figure 2.

3.3 PMTH, SPWH, PWH, SPFH and RPFH Self-drilling Screws:

The #8 PMTH, #8 SPWH, #10 PWH, #10 SPFH and #10 and #12 RPFH self-drilling screws comply with ASTM C1513. The screws have a type "BSD" thread design. The screws have a Phillips modified truss head (PMTH) style, square pan with washer head (SPWH) style, Phillips reduced wafer head (PWH) style, square pan framing head (SPFH) style, and Rex pan framing head (RPFH) style, respectively, and have a clear zinc coating, a yellow zinc coating or a proprietary exterior coating, as indicated in Table 1. See Figures 3, 4, 1, 5 and 6, for PMTH, SPWH, PWH, SPFH and RPFH screws, respectively.

3.4 Cold-formed Steel:

Cold-formed steel material must comply with one of the specifications listed in Section A3.1 of AISI S100 (Section A2.1 of AISI S100 for the 2015, 2012 and 2009 IBC) and must have the minimum base-metal thickness and tensile strength shown in the tables in this report.

4.0 DESIGN AND INSTALLATION

4.1 Design:

4.1.1 General: Selection of screw length must be based on the thickness of the fastened steel members plus the minimum required protrusion past the back of the supporting steel. Point selection must be based on the drilling/piercing capacity of the screw. See Table 1 for minimum required protrusion lengths and drilling/piercing capacities.

When tested for corrosion resistance in accordance with ASTM B117, the screws met the minimum requirement listed in ASTM F1941, as required by ASTM C1513, with no white corrosion after three hours and no red rust after 12 hours.

4.1.2 Prescriptive Design: The screws described in this report may be used where ASTM C1513 screws of the same size and head style/dimension are prescribed in the IRC and in the AISI standards referenced in IBC Section 2211 (2009 IBC Section 2210) for steel-to-steel connections.

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

4.1.3 Engineered Design: The screws described in this report may be used in engineered connections of cold-formed steel light-framed construction. Design of connections must comply with Section J4 of AISI S100 (Section E4 of AISI S100 for the 2015, 2012 and 2009 IBC), using the nominal and allowable screw tension and shear strengths for the screws shown in Table 5. Allowable connection strengths for use in Allowable Strength Design (ASD) for pull-out, pullover, and shear (bearing) capacity for common sheet steel thicknesses are provided in Tables 2, 3 and 4, respectively, based upon laboratory testing in accordance with AISI S905.

Instructions on how to calculate connection design strengths for use in Load and Resistance Factor Design (LRFD) are found in the footnotes of Tables 2, 3 and 4. For connections subject to tension, the least of the allowable pull-out, pullover, and screw tension strength of screws found in Tables 2, 3, and 5, respectively, must be used for design. For connections subject to shear, the lesser of the allowable shear (bearing) and screw shear strength found in Tables 4 and 5, respectively, must be used for design. Design provisions for tapping screw connections subjected to combined shear and tension loading are outside the scope of this report.

Under the 2021 IBC, for screws used in framing connections, in order for the screws to be considered fully effective, the minimum spacing between the screws must be 3 times the nominal diameter of the screws and the minimum edge distance must be 1.5 times the nominal screw diameter. Under the 2018, 2015, 2012 and 2009 IBC, for screws used in framing connections, in order for the screws to be considered fully effective, the minimum spacing between the screws and the minimum edge distance must be 3 times the nominal diameter of the screws, except when the edge is parallel to the direction of the applied force, the minimum edge distance must be 1.5 times the nominal screw diameter. When the spacing between screws is less than 3 times the nominal screw diameter, but at least 2 times the nominal screw diameter, the connection shear strength values in Table 4 must be reduced by 20 percent [Refer to Section B1.5.1.3 of AISI S240 (Section D1.5 of AISI S200 for the 2015, 2012 and 2009 IBC)].

For screws used in applications other than framing connections, the minimum spacing between the screws must be three times the nominal screw diameter and the minimum edge distance and minimum end distance must be 1.5 times the nominal screw diameter. Additionally, under the 2009 IBC, when the distance to the end of the connected part is parallel to the line of the applied force, the allowable connection shear strength determined in accordance with Section E4.3.2 of Appendix A of AISI S100-07 must be considered.

Connected members must be checked for rupture in accordance with Section J6 of AISI S100 (Section E6 of AISI S100 under the 2015 IBC, Section E5 of AISI S100 under the 2012 and 2009 IBC).

4.2 Installation:

Installation of the Senco self-drilling and self-piercing screws must be in accordance with the manufacturer's published installation instructions and this report. The manufacturer's published installation instructions must be available at the jobsite at all times during installation.

The screws must be installed perpendicular to the work surface using a variable speed screw driving tool set to not exceed 2,500 rpm. The screw must penetrate through the supporting steel with a minimum of three threads protruding past the back side of the supporting steel.

5.0 CONDITIONS OF USE

The Senco self-drilling and self-piercing screws described in this report comply with, or are suitable alternatives to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

- **5.1** Screws must be installed in accordance with the manufacturer's published installation instructions and this report. If there is a conflict between the manufacturer's published installation instructions and this report, this report governs.
- **5.2** Connections made with the Senco screws must be designed and constructed in accordance with Section 4.0 of this evaluation report and the approved construction documents. In the case of a conflict between these documents, the more restrictive requirements govern.
- **5.3** The allowable loads (ASD) specified in Section 4.1.3 are not to be increased when the screws are used to resist short-term loads, such as wind or seismic forces.
- 5.4 Evaluation of screws subjected to cyclic or fatigue loading is outside the scope of this report. Applicable Seismic Design Categories shall be determined in accordance with the code for the entire assembly constructed with the screws.
- **5.5** The utilization of the strength values contained in this evaluation report, for the design of diaphragm consisting of steel deck panels fastened to cold-formed steel framing, is outside the scope of this report. Diaphragms constructed using the Senco self-drilling or self-piercing screws must be addressed in a current ICC-ES evaluation report based upon the ICC-ES Acceptance Criteria for Steel Deck Roof and Floor Systems (AC43).
- **5.6** Drawings and calculations verifying compliance with this report and the applicable code must be submitted to the code official for approval. The drawings and calculations are to be prepared by a registered design professional when required by the statutes of the jurisdiction in which the project is to be constructed.
- **5.7** The screws are manufactured under a quality control program with inspections by ICC-ES.

6.0 EVIDENCE SUBMITTED

Data in accordance with the ICC-ES Acceptance Criteria for Tapping Screw Fasteners Used in Steel-to-Steel Connections (AC118), dated January 2018 (editorially revised December 2020).

7.0 IDENTIFICATION

- 7.1 Senco self-drilling and self-piercing screws are marked with a "D" on the top of the heads, as shown in Figures 1 through 6. Packages of Senco self-drilling and selfpiercing screws are labeled with the report holder's name, the screw brand name (Senco) and model number, and the evaluation report number (ESR-3558).
- 7.2 The report holder's contact information is the following:

KYOCERA SENCO INDUSTRIAL TOOLS, INC. 8450 BROADWELL ROAD CINCINNATI, OHIO 45244 (800) 543-4596 www.senco.com

DESIGNATION ¹ (Nom. size – tpi x head type)	DESCRIPTION (Nom. size x	SENCO MODEL NUMBER ³	DRIVE RECESS	HEAD DIAMETER	HEAD NOMINAL DRILL CAPACITY REQUIE IAMETER DIAMETER POINT (in.) PROTRUS	MINIMUM REQUIERD PROTRUSION	COATING ²			
(Head designation)	length)	Nomber		(in.)		(Number)	Min.	Max.	LENGTH (in.)	
#8-15 x Modified Truss (PMTH)	8 x ¹ / ₂	08M050CTRFSP	Phillips	0.350	0.164	Self- piercing	0.021	0.036	0.377	Clear Zinc
#8-18 x Modified Truss (PMTH)	8 x ¹ / ₂	08M050CTRFDP	Phillips	0.350	0.164	#2	0.035	0.100	0.356	Clear Zinc
#8-18 x Pan with	8 x 2	08X200CKADDS	Square	0.352	0.164	#2	0.035	0.100	0.379	Clear Zinc
Washer (SPWH)	8 x 1 ¹ / ₄	08X125CKADDS	Square	0.352	0.164	#2	0.035	0.100	0.379	Clear Zinc
#10-16 x Reduced Wafer (PWH)	10 x ³ / ₄	10M075CKNFDP	Phillips	0.324	0.190	#2	0.035	0.110	0.395	Clear Zinc
	10 x ³ / ₄	10M075CTMFDS	Square	0.348	0.190	#2	0.035	0.110	0.460	Clear Zinc
#10-16 x Pan	10 x 1	10M100CKMFDS	Square	0.348	0.190	#2	0.035	0.110	0.460	Clear Zinc
Framing (SPFH	10 x ⁵ / ₈	10M062CBFFDX	Rex	0.348	0.190	#2	0.035	0.110	0.460	Clear Zinc
or RPFH)	10 x ³ / ₄	10M075YTFFDX	Rex	0.348	0.190	#2	0.035	0.110	0.460	Yellow Zinc
1140.00 D	10 x ³ / ₄	10M075YLFT4X	Rex	0.350	0.190	#4	0.175	0.312	0.474	Yellow Zinc
#10-22 x Pan Framing (RPFH)	10 x ³ / ₄	10M075YKFT4X	Rex	0.350	0.190	#4	0.175	0.312	0.474	Yellow Zinc
	10 x ³ / ₄	10M075EBFT4X	Rex	0.350	0.190	#4	0.175	0.312	0.491	E1000
#40.00	10 x ³ / ₄	10M075CDK	Phillips	0.350	0.190	#2	0.039	0.158	0.372	Clear Zinc
#10-22 x Modified Truss	10 x 1	10M100CDK	Phillips	0.350	0.190	#2	0.039	0.158	0.372	Clear Zinc
(PMTH)	10 x 1 ¹ / ₂	10M150CDK	Phillips	0.350	0.190	#2	0.039	0.158	0.372	Clear Zinc
,	10 x 2	10M200CDK	Phillips	0.350	0.190	#2	0.039	0.158	0.372	Clear Zinc
#12-18 x Pan Framing (RPFH)	12 x ⁷ / ₈	12M087YKFF4X	Rex	0.348	0.216	#4	0.175	0.312	0.563	Yellow Zinc
#12-14 x Pan	12 x 1	12M100YKFF3X	Rex	0.348	0.216	#3	0.110	0.210	0.487	Yellow Zinc
Framing (RPFH)	12 x 1 ¹ / ₂	12M150CTFFDX	Rex	0.348	0.216	#2	0.035	0.110	0.487	Clear Zinc

TABLE 1—SENCO SELF-DRILLING AND SELF-PIERCING SCREWS (ASTM C1513) FOR ENGINEERED STEEL-TO-STEEL CONNECTIONS

For **SI**: 1 inch = 25.4 mm.

¹Refer to Section 3.0 and Figures 1 through 6 for head configuration abbreviations.

²For coating abbreviations, Člear Zinc = Fe/Zn 3A per ASTM F1941; Yellow Zinc = Fe/Zn 3C per ASTM F1941; E1000 = Fe/Zn 8AS per ASTM F1941. ³The 7th digit denotes the coating: C = Clear Zinc, Y = Yellow Zinc, E = E1000. The 8th digit denotes the type of packaging: B = 4000 pcs box, K = 1000 pcs box, T = 1000 pcs tub, L = Loose; except for the #10-22 PMTH screw where the 7th digit denotes the coating and the 9th digit denotes the type of packaging.

TABLE 2—ALLOWABLE TENSILE PULL-OUT LOADS	6 (P _{NOT} /Ω)	pounds-force ^{1,2,3,4}
--	-------------------------	---------------------------------

		STEEL Fu=45 Ksi STEEL Fu=55 Ksi			STEEL Fu=65 Ksi					
SCREW	NOMINAL	SIEELF								
DESIGNATION	DIAMETER (in.)	Design Thickness of Member Not in Contact with the Screw Head (in.)								
	()	0.041	0.050	0.041	0.050	0.062	0.075	0.104		
#8-15 x Modified Truss (PMTH)	0.164	126	167	130	167	-	-	-		
#8-18 x Modified Truss (PMTH)	0.164	73	99	85	100	-	-	-		
#8-18 x Pan with Washer (SPWH)	0.164	88	127	91	128	183	237	382		
#10-16 x Reduced Wafer (PWH)	0.190	85	104	90	105	198	232	341		
#10-16 x Pan Framing (SPFH or RPFH)	0.190	91	126	99	126	191	267	371		
#10-22 x Pan Framing (RPFH)	0.190	88	100	94	100	201	250	372		
#10-22 x Modified Truss (PMTH)	0.190	95	102	95	132	202	202	404		
#12-18 x Pan Framing (RPFH)	0.216	93	124	96	125	195	240	368		
#12-14 x Pan Framing (RPFH)	0.216	84	118	87	118	176	231	390		

For SI: 1 inch = 25.4 mm, 1 pound-force = 4.4 N, 1 ksi = 6.89 MPa.

¹For tension connections, the least of the allowable pull-out, pullover, and screw tension strength of screw found in Tables 2, 3, and 5, respectively must be used for design.

²Nominal load values are based upon laboratory testing in accordance with AISI S905.

³The allowable pull-out capacity for intermediate member thicknesses can be determined by interpolating within the values in the table for the applicable steel tensile strength.

⁴To calculate LRFD values, multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD Φ factor of 0.5.

	NOMINAL DIAMETER		STEEL F	STEEL F _U =45 Ksi STEEL F _U =55 Ksi			STEEL F _u =65 Ksi		
SCREW DESIGNATION			Design Thickness of Member in Contact with the Screw Head (in.)						
DESIGNATION	(in.)	DIAMETER (in.)	0.041	0.050	0.041	0.050	0.062	0.075	0.104
#8-15 x Modified Truss (PMTH)	0.164	0.350	349	366	359	367	-	-	-
#8-18 x Modified Truss (PMTH)	0.164	0.350	370	385	381	385	387	387	-
#8-18 x Pan with Washer (SPWH)	0.164	0.352	463	488	477	488	488	547	557
#10-16 x Reduced Wafer (PWH)	0.190	0.324	435	451	448	451	490	518	638
#10-16 x Pan Framing (SPFH or RPFH)	0.190	0.348	493	501	502	502	788	881	881
#10-22 x Pan Framing (RPFH)	0.190	0.350	427	533	480	534	785	785	785
#10-22 x Modified Truss (PMTH)	0.190	0.350	368	368	420	466	507	531	619
#12-18 x Pan Framing (RPFH)	0.216	0.348	477	488	490	490	769	873	1011
#12-14 x Pan Framing (RPFH)	0.216	0.348	482	505	495	506	766	835	1030

TABLE 3—ALLOWABLE TENSILE PULL-OVER LOADS (P_{NOV}/Ω), pounds-force^{1,2,3,4}

For SI: 1 inch = 25.4 mm, 1 pound-force = 4.4 N, 1 ksi = 6.89 MPa.

¹For tension connections, the least of the allowable pull-out, pullover, and screw tension strength of screw found in Tables 2, 3, and 5, respectively must be used for design.

²Nominal load values are based upon laboratory testing in accordance with AISI S905.

³The allowable pullover capacity for intermediate member thicknesses can be determined by interpolating within the values in the table for the applicable steel tensile strength.

⁴To calculate LRFD values, multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD Φ factor of 0.5.

0005711/		STEEL Fu=45 Ksi STEEL Fu=8			_u =55 Ksi STEEL F _u =65 Ksi						
SCREW DESIGNATION	NOMINAL DIAMETER (in.)	Design Thickness of Both Connected Members (in.)									
DESIGNATION	DIAMETER (III.)	0.041	0.050	0.041	0.050	0.062	0.075	0.104			
#8-15 x Modified Truss (PMTH)	0.164	286	334	294	334	-	-	-			
#8-18 x Modified Truss (PMTH)	0.164	217	267	223	268	412	428	-			
#8-18 x Pan with Washer (SPWH)	0.164	205	270	211	271	425	425	425			
#10-16 x Reduced Wafer (PWH)	0.190	226	277	232	277	446	485	511			
#10-16 x Pan Framing (SPFH or RPFH)	0.190	226	279	232	279	512	517	517			
#10-22 x Pan Framing (RPFH)	0.190	233	262	240	263	470	550	550			
#10-22 x Modified Truss (PMTH)	0.190	235	327	235	420	517	517	561			
#12-18 x Pan Framing (RPFH)	0.216	238	292	245	292	573	573	573			
#12-14 x Pan Framing (RPFH)	0.216	253	309	261	309	544	577	606			

For **SI:** 1 inch = 25.4 mm, 1 pound-force = 4.4 N, 1 ksi = 6.89 MPa.

¹The lower of the allowable shear (bearing) and the allowable screw shear strength found in Tables 4 and 5, respectively must be used for design.

²Nominal load values are based on laboratory testing in accordance with AISI S905.

³The allowable bearing capacity for other member thicknesses can be determined by interpolating within the values in the table for the applicable steel tensile strength.

⁴To calculate LRFD values, multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD Φ factor of 0.5.

SCREW DESIGNATION	NOMINAL DIAMETER (in.)		RENGTH DETERMINED	ALLOWABLE SCREW STRENGTH		
		Tension, P _{ts} (Ibf)	Shear, P _{ss} (Ibf)	Tension (P _{ts} /Ω)¹ (Ibf)	Shear (P _{ss} /Ω) ¹ (Ibf)	
#8-15 x Modified Truss (PMTH)	0.164	1423	1132	475	377	
#8-18 x Modified Truss (PMTH)	0.164	2280	1351	760	450	
#8-18 x Pan with Washer (SPWH)	0.164	1927	1377	642	459	
#10-16 x Reduced Wafer (PWH)	0.190	2426	1736	809	579	
#10-16 x Pan Framing (SPFH or RPFH)	0.190	3175	1779	1058	593	
#10-22 x Pan Framing (RPFH)	0.190	2318	1795	773	598	
#10-22 x Modified Truss (PMTH)	0.190	1637	1576	545	525	
#12-18 x Pan Framing (RPFH)	0.216	3585	2132	1195	711	
#12-14 x Pan Framing (RPFH)	0.216	2826	2076	942	692	

TABLE 5—SCREW STRENGTH^{1,2,3,4}

For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N, 1 ksi = 6.89 MPa.

¹For tension connections, the least of the allowable pull-out, pullover, and screw tension strength of screw found in Tables 2, 3, and 5, respectively, must be used for design.

²For shear connections, the lower of the allowable shear (bearing) and the allowable screw shear strength found in Tables 4 and 5, respectively, must be used for design.

³See Section 4.1.3 for screw spacing and end distance requirements.

⁴To calculate LRFD values; multiply the nominal screw strengths by the LRFD Φ factor of 0.5.

FIGURE 1—PHILLIPS REDUCED WAFER HEAD (PWH) SELF-DRILLING SCREW (SECTION 3.3)

FIGURE 4—SQUARE PAN WITH WASHER HEAD (SPWH) SELF-DRILLING SCREW (SECTION 3.3)

FIGURE 5—SQUARE PAN FRAMING HEAD (SPFH) SELF-DRILLING SCREW (SECTION 3.3)



FIGURE 3—PHILLIPS MODIFIED TRUSS HEAD (PMTH) SELF-DRILLING SCREW (SECTION 3.3)

FIGURE 6—REX PAN FRAMING HEAD (RPFH) SELF-DRILLING SCREW (SECTION 3.3)